
validate-pyproject Documentation
Release 0.16

Anderson Bravalheri

Jan 23, 2024

CONTENTS

1 Contents 3
1.1 validate-pyproject . 3
1.2 Schemas . 5
1.3 Embedding validations in your project . 14
1.4 FAQ . 15
1.5 Contributing . 16
1.6 Developer Guide . 20
1.7 License . 22
1.8 Contributors . 26
1.9 Changelog . 26
1.10 validate_pyproject . 31

2 Indices and tables 43

Python Module Index 45

Index 47

i

ii

validate-pyproject Documentation, Release 0.16

validate-pyproject is a command line tool and Python library for validating pyproject.toml files based on JSON
Schema, and includes checks for PEP 517, PEP 518 and PEP 621.

CONTENTS 1

https://peps.python.org/pep-0517/
https://peps.python.org/pep-0518/
https://peps.python.org/pep-0621/

validate-pyproject Documentation, Release 0.16

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 validate-pyproject

Automated checks on pyproject.toml powered by JSON Schema definitions

Important: This project is experimental and under active development. Issue reports and contributions are very
welcome.

1.1.1 Description

With the approval of PEP 517 and PEP 518, the Python community shifted towards a strong focus on standardisation
for packaging software, which allows more freedom when choosing tools during development and make sure packages
created using different technologies can interoperate without the need for custom installation procedures.

This shift became even more clear when PEP 621 was also approved, as a standardised way of specifying project
metadata and dependencies.

validate-pyproject was born in this context, with the mission of validating pyproject.toml files, and make
sure they are compliant with the standards and PEPs. Behind the scenes, validate-pyproject relies on JSON
Schema files, which, in turn, are also a standardised way of checking if a given data structure complies with a certain
specification.

3

https://pyscaffold.org/
https://cirrus-ci.com/github/abravalheri/validate-pyproject
https://validate-pyproject.readthedocs.io
https://coveralls.io/r/abravalheri/validate-pyproject
https://pypi.org/project/validate-pyproject/
https://peps.python.org/pep-0517/
https://peps.python.org/pep-0518/
https://peps.python.org/pep-0621/
https://json-schema.org/
https://json-schema.org/

validate-pyproject Documentation, Release 0.16

1.1.2 Usage

The easiest way of using validate-pyproject is via CLI. To get started, you need to install the package, which can
be easily done using pipx:

$ pipx install 'validate-pyproject[all]'

Now you can use validate-pyproject as a command line tool:

in you terminal
$ validate-pyproject --help
$ validate-pyproject path/to/your/pyproject.toml

You can also use validate-pyproject in your Python scripts or projects:

in your python code
from validate_pyproject import api, errors

let's assume that you have access to a `loads` function
responsible for parsing a string representing the TOML file
(you can check the `toml` or `tomli` projects for that)
pyproject_as_dict = loads(pyproject_toml_str)

now we can use validate-pyproject
validator = api.Validator()

try:
validator(pyproject_as_dict)

except errors.ValidationError as ex:
print(f"Invalid Document: {ex.message}")

To do so, don’t forget to add it to your virtual environment or specify it as a project or library dependency.

Note: When you install validate-pyproject[all], the packages tomli, packaging and trove-classifiers
will be automatically pulled as dependencies. tomli is a lightweight parser for TOML, while packaging and
trove-classifiers are used to validate aspects of PEP 621.

If you are only interested in using the Python API and wants to keep the dependencies minimal, you can also install
validate-pyproject (without the [all] extra dependencies group).

If you don’t install trove-classifiers, validate-pyprojectwill try to download a list of valid classifiers directly
from PyPI (to prevent that, set the environment variable NO_NETWORK or VALIDATE_PYPROJECT_NO_NETWORK).

On the other hand, if validate-pyproject cannot find a copy of packaging in your environment, the validation
will fail.

More details about validate-pyproject and its Python API can be found in our docs, which includes a description of
the used JSON schemas, instructions for using it in a pre-compiled way and information about extending the validation
with your own plugins.

Tip: If you consider contributing to this project, have a look on our contribution guides.

4 Chapter 1. Contents

https://pypa.github.io/pipx/
https://realpython.com/python-virtual-environments-a-primer/
https://packaging.python.org/tutorials/managing-dependencies/
https://setuptools.pypa.io/en/latest/userguide/dependency_management.html
https://peps.python.org/pep-0621/
https://validate-pyproject.readthedocs.io
https://validate-pyproject.readthedocs.io/en/latest/schemas.html
https://validate-pyproject.readthedocs.io/en/latest/embedding.html
https://validate-pyproject.readthedocs.io/en/latest/dev-guide.html
https://validate-pyproject.readthedocs.io/en/latest/contributing.html

validate-pyproject Documentation, Release 0.16

1.1.3 pre-commit

validate-pyproject can be installed as a pre-commit hook:

repos:
- repo: https://github.com/abravalheri/validate-pyproject
rev: main
hooks:
- id: validate-pyproject

By default, this pre-commit hook will only validate the pyproject.toml file at the root of the project repository.
You can customize that by defining a custom regular expression pattern using the files parameter.

You can also use pre-commit autoupdate to update to the latest stable version of validate-pyproject (recom-
mended).

1.1.4 Note

This project and its sister project ini2toml were initially created in the context of PyScaffold, with the purpose of helping
migrating existing projects to PEP 621-style configuration when it is made available on setuptools. For details and
usage information on PyScaffold see https://pyscaffold.org/.

1.2 Schemas

The following sections represent the schemas used in validate-pyproject. They were automatically rendered via
sphinx-jsonschema for quick reference. In case of doubts or confusion, you can also have a look on the raw JSON files
in json-schemas.

1.2.1 Data structure for pyproject.toml files

File format containing build-time configurations for the Python ecosystem. PEP 517 initially defined a build-system
independent format for source trees which was complemented by PEP 518 to provide a way of specifying dependencies
for building Python projects. Please notice the project table (as initially defined in PEP 621) is not included in this
schema and should be considered separately.

1.2. Schemas 5

https://pre-commit.com/#regular-expressions
https://ini2toml.readthedocs.io
https://peps.python.org/pep-0621/
https://pyscaffold.org/
https://pypi.org/project/sphinx-jsonschema/
https://peps.python.org/pep-0517/
https://peps.python.org/pep-0518/
https://peps.python.org/pep-0621/

validate-pyproject Documentation, Release 0.16

https://packaging.python.org/en/latest/specifications/declaring-build-dependencies/
type object
properties

• build-system Table used to store build-related data
type object
properties

• requires List of dependencies in the PEP 508 format required to execute the
build system. Please notice that the resulting dependency graph
MUST NOT contain cycles
type array
items type string

• build-backend Python object that will be used to perform the build according to
PEP 517
type string
format pep517-backend-reference

• backend-path List of directories to be prepended to sys.path when loading the
back-end, and running its hooks
type array
items type string

additionalProperties False

• project
https://packaging.python.org/en/latest/specifications/declaring-project-metadata/

• tool
type object

additionalProperties False

1.2.2 Package metadata stored in the project table

Data structure for the project table inside pyproject.toml (as initially defined in PEP 621)

https://packaging.python.org/en/latest/specifications/declaring-project-metadata/
type object
properties

• name The name (primary identifier) of the project. MUST be statically defined.
type string
format pep508-identifier

• version The version of the project as supported by PEP 440.
type string
format pep440

• de-
scrip-
tion

The summary description of the project

type string
• readme Full/detailed description of the project in the form of a README with meaning similar to the one

defined in core metadata’s Description
oneOf Relative path to a text file (UTF-8) containing the full description of the project.

If the file path ends in case-insensitive .md or .rst suffixes, then the content-type
is respectively text/markdown or text/x-rst
type string
type object

continues on next page

6 Chapter 1. Contents

https://packaging.python.org/en/latest/specifications/declaring-build-dependencies/
https://peps.python.org/pep-0508/
https://peps.python.org/pep-0517/
https://packaging.python.org/en/latest/specifications/declaring-project-metadata/
https://peps.python.org/pep-0621/
https://packaging.python.org/en/latest/specifications/declaring-project-metadata/
https://peps.python.org/pep-0440/
https://packaging.python.org/specifications/core-metadata/#summary
https://peps.python.org/pep-0621/#readme
https://packaging.python.org/specifications/core-metadata/#description

validate-pyproject Documentation, Release 0.16

Table 1 – continued from previous page
allOf anyOf properties

• file Relative path to a text file con-
taining the full description of
the project.
type string

properties
• text Full text describing the project.

type string
properties

•
content-
type

Content-type (RFC 1341) of the full description
(e.g. text/markdown). The charset parame-
ter is assumed UTF-8 when not present.
type string

•
requires-
python

The Python version requirements of the project.
type string
format pep508-versionspec

• license Project license.
oneOf properties

• file Relative path to the file (UTF-8) which contains the license for
the project.
type string

properties
• text The license of the project whose meaning is that of the License

field from the core metadata.
type string

• authors The people or organizations considered to be the ‘authors’ of the project. The exact meaning is open
to interpretation (e.g. original or primary authors, current maintainers, or owners of the package).
type array
items Author or Maintainer

• main-
tainers

The people or organizations considered to be the ‘maintainers’ of the project. Similarly to authors,
the exact meaning is open to interpretation.
type array
items Author or Maintainer

• key-
words

List of keywords to assist searching for the distribution in a larger catalog.
type array
items type string

• classi-
fiers

Trove classifiers which apply to the project.
type array
items PyPI classifier.

type string
format trove-classifier

• urls URLs associated with the project in the form label => value.
type object
patternProperties

• ^.+$ type string
format url

additional-
Properties

False

• scripts Instruct the installer to create command-line wrappers for the given entry points.
Entry-points

• gui-
scripts

Instruct the installer to create GUI wrappers for the given entry points. The difference between
scripts and gui-scripts is only relevant in Windows.

continues on next page

1.2. Schemas 7

https://datatracker.ietf.org/doc/html/rfc1341.html
https://packaging.python.org/specifications/core-metadata/#requires-python
https://peps.python.org/pep-0621/#license
https://packaging.python.org/specifications/core-metadata/#license
https://packaging.python.org/specifications/core-metadata/#license
https://pypi.org/classifiers/
https://pypi.org/classifiers/
https://packaging.python.org/specifications/entry-points/
https://packaging.python.org/specifications/entry-points/

validate-pyproject Documentation, Release 0.16

Table 1 – continued from previous page
Entry-points

• entry-
points

Instruct the installer to expose the given modules/functions via entry-point discovery mechanism
(useful for plugins). More information available in the Python packaging guide.
patternProperties

• ^.+$
Entry-points

additional-
Properties

False

• depen-
dencies

Project (mandatory) dependencies.
type array
items Dependency

•
optional-
dependencies

Optional dependency for the project
type object
patternProperties

• ^.+$ type array
items Dependency

additional-
Properties

False

• dy-
namic

Specifies which fields are intentionally unspecified and expected to be dynamically provided by
build tools
type array
items enum version, description, readme, requires-python, license, authors,

maintainers, keywords, classifiers, urls, scripts, gui-scripts,
entry-points, dependencies, optional-dependencies

additional-
Properties

False

if not properties

• dy-
namic

version is listed in dynamic

then version should be statically defined in the version field

Author or Maintainer

#/definitions/author
type object
properties

• name MUST be a valid email name, i.e. whatever can be put as a name, before an
email, in RFC 822.
type string

• email MUST be a valid email address
type string
format idn-email

additionalProperties False

8 Chapter 1. Contents

https://packaging.python.org/specifications/entry-points/
https://datatracker.ietf.org/doc/html/rfc822.html

validate-pyproject Documentation, Release 0.16

Entry-points

Entry-points are grouped together to indicate what sort of capabilities they provide. See the packaging guides and
setuptools docs for more information.

#/definitions/entry-point-group
type object
patternProperties

• ^.+$ Reference to a Python object. It is either in the form importable.module,
or importable.module:object.attr.
type string
format python-entrypoint-reference

additionalProperties False

Dependency

Project dependency specification according to PEP 508

#/definitions/dependency
type string
format pep508

1.2.3 tool table

According to PEP 518, tools can define their own configuration inside pyproject.toml by using custom subtables
under tool.

In validate-pyproject, schemas for these subtables can be specified via Plugins. The following subtables are
defined by built-in plugins (i.e. plugins that are included in the default distribution of validate-pyproject):

tool.setuptools table

setuptools-specific configurations that can be set by users that require customization. These configurations are
completely optional and probably can be skipped when creating simple packages. They are equivalent to some of the
Keywords used by the setup.py file, and can be set via the tool.setuptools table. It considers only setuptools
parameters that are not covered by PEP 621; and intentionally excludes dependency_links and setup_requires
(incompatible with modern workflows/standards).

https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html
type object
properties

• platforms type array
items type string

• provides Package and virtual package names contained within this package (not supported by pip)
type array
items type string

format pep508-identifier
• obsoletes Packages which this package renders obsolete (not supported by pip)

type array
continues on next page

1.2. Schemas 9

https://packaging.python.org/specifications/entry-points/
https://setuptools.pypa.io/en/latest/userguide/entry_point.html
https://peps.python.org/pep-0518/
https://setuptools.pypa.io/en/latest/references/keywords.html
https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html#setuptools-specific-configuration
https://peps.python.org/pep-0621/
https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html

validate-pyproject Documentation, Release 0.16

Table 2 – continued from previous page
items type string

format pep508-identifier
• zip-safe Whether the project can be safely installed and run from a zip file. OBSOLETE: only rel-

evant for pkg_resources, easy_install and setup.py install in the context of eggs
(DEPRECATED).
type boolean

• script-
files

Legacy way of defining scripts (entry-points are preferred). Equivalent to the script keyword
in setup.py (it was renamed to avoid confusion with entry-point based project.scripts
defined in PEP 621). DISCOURAGED: generic script wrappers are tricky and may not work
properly. Whenever possible, please use project.scripts instead.
type array
items type string

• eager-
resources

Resources that should be extracted together, if any of them is needed, or if any C exten-
sions included in the project are imported. OBSOLETE: only relevant for pkg_resources,
easy_install and setup.py install in the context of eggs (DEPRECATED).
type array
items type string

• packages Packages that should be included in the distribution. It can be given either as a list of package
identifiers or as a dict-like structure with a single key find which corresponds to a dynamic
call to setuptools.config.expand.find_packages function. The find key is associated
with a nested dict-like structure that can contain where, include, exclude and namespaces
keys, mimicking the keyword arguments of the associated function.
oneOf Array of Python package identifiers

type array
items Valid package name
‘find:’ directive

• package-
dir

dict-like structure mapping from package names to directories where their code can be found.
The empty string (as key) means that all packages are contained inside the given directory will
be included in the distribution.
type object
patternProperties

• ^.*$
type string

additionalProp-
erties

False

• package-
data

Mapping from package names to lists of glob patterns. Usually this option is not needed when
using include-package-data = true For more information on how to include data files,
check setuptools docs.
type object
patternProperties

• ^.*$ type array
items type string

additionalProp-
erties

False

• include-
package-
data

Automatically include any data files inside the package directories that are specified by
MANIFEST.in For more information on how to include data files, check setuptools docs.
type boolean

• exclude-
package-
data

Mapping from package names to lists of glob patterns that should be excluded For more infor-
mation on how to include data files, check setuptools docs.
type object
patternProperties

continues on next page

10 Chapter 1. Contents

https://peps.python.org/pep-0621/
https://docs.python.org/3.10/library/stdtypes.html#dict
https://setuptools.pypa.io/en/latest/userguide/datafiles.html
https://setuptools.pypa.io/en/latest/userguide/datafiles.html
https://setuptools.pypa.io/en/latest/userguide/datafiles.html

validate-pyproject Documentation, Release 0.16

Table 2 – continued from previous page
• ^.*$ type array

items type string
additionalProp-
erties

False

•
namespace-
packages

DEPRECATED: use implicit namespaces instead (PEP 420).
type array
items type string

format python-module-name
• py-

modules
Modules that setuptools will manipulate
type array
items type string

format python-module-name
• data-files dict-like structure where each key represents a directory and the value is a list of glob patterns

that should be installed in them. DISCOURAGED: please notice this might not work as ex-
pected with wheels. Whenever possible, consider using data files inside the package directories
(or create a new namespace package that only contains data files). See data files support.
type object
patternProperties

• ^.*$ type array
items type string

• cmdclass Mapping of distutils-style command names to setuptools.Command subclasses which in turn
should be represented by strings with a qualified class name (i.e., “dotted” form with module),
e.g.:

cmdclass = {mycmd = "pkg.subpkg.module.CommandClass"}

The command class should be a directly defined at the top-level of the containing module (no
class nesting).
type object
patternProperties

• ^.*$ type string
format python-qualified-identifier

• license-
files

PROVISIONAL: list of glob patterns for all license files being distributed. (likely to be-
come standard with PEP 639). By default: ['LICEN[CS]E*', 'COPYING*', 'NOTICE*',
'AUTHORS*']
type array
items type string

• dynamic Instructions for loading PEP 621-related metadata dynamically
type object
properties

• version A version dynamically loaded via either the attr: or file: directives.
Please make sure the given file or attribute respects PEP 440. Also ensure
to set project.dynamic accordingly.
oneOf ‘attr:’ directive

‘file:’ directive

• classifiers
‘file:’ directive

• descrip-
tion

‘file:’ directive

continues on next page

1.2. Schemas 11

https://peps.python.org/pep-0420/
https://setuptools.pypa.io/en/latest/userguide/datafiles.html
https://peps.python.org/pep-0639/
https://peps.python.org/pep-0621/
https://peps.python.org/pep-0440/

validate-pyproject Documentation, Release 0.16

Table 2 – continued from previous page

• entry-
points

‘file:’ directive

• depen-
dencies

‘file:’ directive for dependencies

• optional-
dependencies

type object
patternProperties

• .+
‘file:’ directive for dependencies

additionalProp-
erties

False

• readme type object
anyOf ‘file:’ directive

type object
properties

• content-
type

type string

• file
#/definitions/file-
directive/properties/file

additionalProp-
erties

False

additionalProp-
erties

False

additionalProp-
erties

False

Valid package name

Valid package name (importable or PEP 561).

#/definitions/package-name
type string
anyOf type string

format python-module-name
type string
format pep561-stub-name

12 Chapter 1. Contents

https://peps.python.org/pep-0561/

validate-pyproject Documentation, Release 0.16

‘file:’ directive

Value is read from a file (or list of files and then concatenated)

#/definitions/file-directive
type object
properties

• file oneOf type string
type array
items type string

additionalProperties False

‘file:’ directive for dependencies

allOf BETA: subset of the requirements.txt format without pip flags and options (one PEP 508-compliant
string per line, lines that are blank or start with # are excluded). See dynamic metadata.
‘file:’ directive

‘attr:’ directive

Value is read from a module attribute. Supports callables and iterables; unsupported types are cast via str()

#/definitions/attr-directive
type object
properties

• attr type string
format python-qualified-identifier

additionalProperties False

1.2. Schemas 13

https://peps.python.org/pep-0508/
https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html#dynamic-metadata

validate-pyproject Documentation, Release 0.16

‘find:’ directive

#/definitions/find-directive
type object
properties

• find Dynamic package discovery.
type object
properties

• where Directories to be searched for packages (Unix-style relative path)
type array
items type string

• exclude Exclude packages that match the values listed in this field. Can con-
tainer shell-style wildcards (e.g. 'pkg.*')
type array
items type string

• include Restrict the found packages to just the ones listed in this field. Can
container shell-style wildcards (e.g. 'pkg.*')
type array
items type string

• namespaces When True, directories without a __init__.py file will also be
scanned for PEP 420-style implicit namespaces
type boolean

additionalProperties False
additionalProperties False

1.3 Embedding validations in your project

validate-pyproject can be used as a dependency in your project in the same way you would use any other Python
library, i.e. by adding it to the same virtual environment you run your code in, or by specifying it as a project or library
dependency that is automatically retrieved every time your project is installed. Please check this example for a quick
overview on how to use the Python API.

Alternatively, if you cannot afford having external dependencies in your project you can also opt to “vendorise”1

validate-pyproject. This can be done automatically via tools such as vendoring or vendorize and many others
others, however this technique will copy several files into your project.

However, if you want to keep the amount of files to a minimum, validate-pyproject offers a different solution that
consists in pre-compiling the JSON Schemas (thanks to fastjsonschema).

After installing validate-pyproject this can be done via CLI as indicated in the command below:

in you terminal
$ python -m validate_pyproject.pre_compile --help
$ python -m validate_pyproject.pre_compile -O dir/for/genereated_files

This command will generate a few files under the directory given to the CLI. Please notice this directory should, ideally,
be empty, and will correspond to a “sub-package” in your package (a __init__.py file will be generated, together
with a few other ones).

Assuming you have created a genereated_files directory, and that the value for the --main-file option in the
CLI was kept as the default __init__.py, you should be able to invoke the validation function in your code by doing:

1 The words “vendorise” or “vendoring” in this text refer to the act of copying external dependencies to a folder inside your project, so they are
distributed in the same package and can be used directly without relying on installation tools, such as pip.

14 Chapter 1. Contents

https://setuptools.pypa.io/en/latest/userguide/package_discovery.html
https://peps.python.org/pep-0420/
https://realpython.com/python-virtual-environments-a-primer/
https://packaging.python.org/tutorials/managing-dependencies/
https://setuptools.pypa.io/en/latest/userguide/dependency_management.html
https://setuptools.pypa.io/en/latest/userguide/dependency_management.html
https://pypi.org/project/vendoring
https://pypi.org/project/vendorize
https://pypi.org/project/fastjsonschema
https://pypi.org/project/pip

validate-pyproject Documentation, Release 0.16

from .genereated_files import validate, JsonSchemaValueException

try:
validate(dict_representing_the_parsed_toml_file)

except JsonSchemaValueException:
print("Invalid File")

1.4 FAQ

1.4.1 Why JSON Schema?

This design was initially inspired by an issue in the setuptools repository, and brings a series of advantages and
disadvantages.

Disadvantages include the fact that JSON Schema might be limited at times and incapable of describing more complex
checks. Additionally, error messages produced by JSON Schema libraries might not be as pretty as the ones used when
bespoke validation is in place.

On the other hand, the fact that JSON Schema is standardised and have a widespread usage among several programming
language communities, means that a bigger number of people can easily understand the schemas and modify them if
necessary.

Additionally, PEP 518 already includes a JSON Schema representation, which suggests that it can be used at the same
time as specification language and validation tool.

1.4.2 Why fastjsonschema?

While there are other (more popular) JSON Schema libraries in the Python community, none of the ones the original
author of this package investigated (other than fastjsonschema) fulfilled the following requirements:

• Minimal number of dependencies (ideally 0)

• Easy to “vendorise”, i.e. copy the source code of the package to be used directly without requiring installation.

fastjsonschema has no dependency and can generate validation code directly, which bypass the need for copying most
of the files when “embedding”.

1.4.3 Why draft-07 of JSON Schema and not a more modern version?

The most modern version of JSON Schema supported by fastjsonschema is Draft 07. It is not as bad as it may sound,
it even supports if-then-else-style conditions. . .

1.4. FAQ 15

https://github.com/pypa/setuptools/issues/2671
https://json-schema.org/
https://peps.python.org/pep-0518/
https://json-schema.org/
https://pypi.org/project/fastjsonschema
https://pypi.org/project/fastjsonschema
https://pypi.org/project/fastjsonschema
https://json-schema.org/understanding-json-schema/reference/conditionals.html

validate-pyproject Documentation, Release 0.16

1.4.4 Why the URLs used as $id do not point to the schemas themselves?

According to the JSON Schema, the $id keyword is just a unique identifier to differentiate between schemas and is not
required to match a real URL. The text on the standard is:

Note that this URI is an identifier and not necessarily a network locator. In the case of a network-
addressable URL, a schema need not be downloadable from its canonical URI.

This information is confirmed in a similar document submitted to the IETF.

1.5 Contributing

Welcome to validate-pyproject contributor’s guide.

This document focuses on getting any potential contributor familiarized with the development processes, but other
kinds of contributions are also appreciated.

If you are new to using git or have never collaborated in a project previously, please have a look at contribution-
guide.org. Other resources are also listed in the excellent guide created by FreeCodeCamp.

Please notice, all users and contributors are expected to be open, considerate, reasonable, and respectful. When in
doubt, Python Software Foundation’s Code of Conduct is a good reference in terms of behavior guidelines.

1.5.1 Issue Reports

If you experience bugs or general issues with validate-pyproject, please have a look on the issue tracker. If you
don’t see anything useful there, please feel free to fire an issue report.

Tip: Please don’t forget to include the closed issues in your search. Sometimes a solution was already reported, and
the problem is considered solved.

New issue reports should include information about your programming environment (e.g., operating system, Python
version) and steps to reproduce the problem. Please try also to simplify the reproduction steps to a very minimal
example that still illustrates the problem you are facing. By removing other factors, you help us to identify the root
cause of the issue.

1.5.2 Documentation Improvements

You can help improve validate-pyproject docs by making them more readable and coherent, or by adding missing
information and correcting mistakes.

validate-pyproject documentation uses Sphinx as its main documentation compiler. This means that the docs are
kept in the same repository as the project code, in the form of reStructuredText files, and that any documentation update
is done in the same way was a code contribution.

Tip: Please notice that the GitHub web interface provides a quick way of propose changes in validate-pyproject’s
files. While this mechanism can be tricky for normal code contributions, it works perfectly fine for contributing to the
docs, and can be quite handy.

If you are interested in trying this method out, please navigate to the docs folder in the source repository, find which
file you would like to propose changes and click in the little pencil icon at the top, to open GitHub’s code editor. Once

16 Chapter 1. Contents

https://json-schema.org/draft/2020-12/json-schema-core.html#name-the-id-keyword
https://datatracker.ietf.org/doc/html/draft-wright-json-schema-01#section-8
https://opensource.guide/how-to-contribute
https://opensource.guide/how-to-contribute
https://git-scm.com
https://www.contribution-guide.org/
https://www.contribution-guide.org/
https://github.com/FreeCodeCamp/how-to-contribute-to-open-source
https://www.python.org/psf/conduct/
https://github.com/abravalheri/validate-pyproject/issues
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/
https://docs.github.com/en/repositories/working-with-files/managing-files/editing-files
https://github.com/abravalheri/validate-pyproject
https://docs.github.com/en/repositories/working-with-files/managing-files/editing-files

validate-pyproject Documentation, Release 0.16

you finish editing the file, please write a message in the form at the bottom of the page describing which changes have
you made and what are the motivations behind them and submit your proposal.

When working on documentation changes in your local machine, you can compile them using tox:

tox -e docs

and use Python’s built-in web server for a preview in your web browser (http://localhost:8000):

python3 -m http.server --directory 'docs/_build/html'

1.5.3 Code Contributions

Understanding how the project works

If you have a change in mind, please have a look in our Developer Guide. It explains the main aspects of the project
and provide a brief overview on how it is organised and how to implement Plugins.

Submit an issue

Before you work on any non-trivial code contribution it’s best to first create a report in the issue tracker to start a
discussion on the subject. This often provides additional considerations and avoids unnecessary work.

Create an environment

Before you start coding, we recommend creating an isolated virtual environment to avoid any problems with your
installed Python packages. This can easily be done via either virtualenv:

virtualenv <PATH TO VENV>
source <PATH TO VENV>/bin/activate

or Miniconda:

conda create -n validate-pyproject python=3 six virtualenv pytest pytest-cov
conda activate validate-pyproject

Clone the repository

1. Create an user account on GitHub if you do not already have one.

2. Fork the project repository: click on the Fork button near the top of the page. This creates a copy of the code
under your account on GitHub.

3. Clone this copy to your local disk:

git clone git@github.com:YourLogin/validate-pyproject.git
cd validate-pyproject

4. You should run:

1.5. Contributing 17

https://tox.wiki/en/stable/
https://github.com/abravalheri/validate-pyproject/issues
https://realpython.com/python-virtual-environments-a-primer/
https://virtualenv.pypa.io/en/stable/
https://docs.conda.io/en/latest/miniconda.html
https://github.com/abravalheri/validate-pyproject

validate-pyproject Documentation, Release 0.16

pip install -U pip setuptools -e .

to be able to import the package under development in the Python REPL.

5. Install pre-commit:

pip install pre-commit
pre-commit install

validate-pyproject comes with a lot of hooks configured to automatically help the developer to check the
code being written.

Implement your changes

1. Create a branch to hold your changes:

git checkout -b my-feature

and start making changes. Never work on the main branch!

2. Start your work on this branch. Don’t forget to add docstrings to new functions, modules and classes, especially
if they are part of public APIs.

3. Add yourself to the list of contributors in AUTHORS.rst.

4. When you’re done editing, do:

git add <MODIFIED FILES>
git commit

to record your changes in git.

Please make sure to see the validation messages from pre-commit and fix any eventual issues. This should
automatically use ruff to check/fix the code style in a way that is compatible with the project.

Important: Don’t forget to add unit tests and documentation in case your contribution adds an additional feature
and is not just a bugfix.

Moreover, writing a descriptive commit message is highly recommended. In case of doubt, you can check the
commit history with:

git log --graph --decorate --pretty=oneline --abbrev-commit --all

to look for recurring communication patterns.

5. Please check that your changes don’t break any unit tests with:

tox

(after having installed tox with pip install tox or pipx).

You can also use tox to run several other pre-configured tasks in the repository. Try tox -av to see a list of the
available checks.

18 Chapter 1. Contents

https://pre-commit.com/
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html
https://git-scm.com
https://pre-commit.com/
https://beta.ruff.rs/docs/
https://chris.beams.io/posts/git-commit
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/

validate-pyproject Documentation, Release 0.16

Submit your contribution

1. If everything works fine, push your local branch to GitHub with:

git push -u origin my-feature

2. Go to the web page of your fork and click “Create pull request” to send your changes for review.

Find more detailed information in creating a PR. You might also want to open the PR as a draft first and
mark it as ready for review after the feedbacks from the continuous integration (CI) system or any required
fixes.

Troubleshooting

The following tips can be used when facing problems to build or test the package:

1. Make sure to fetch all the tags from the upstream repository. The command git describe --abbrev=0
--tags should return the version you are expecting. If you are trying to run CI scripts in a fork repository,
make sure to push all the tags. You can also try to remove all the egg files or the complete egg folder, i.e., .eggs,
as well as the *.egg-info folders in the src folder or potentially in the root of your project.

2. Sometimes tox misses out when new dependencies are added, especially to setup.cfg and docs/
requirements.txt. If you find any problems with missing dependencies when running a command with tox,
try to recreate the tox environment using the -r flag. For example, instead of:

tox -e docs

Try running:

tox -r -e docs

3. Make sure to have a reliable tox installation that uses the correct Python version (e.g., 3.7+). When in doubt
you can run:

tox --version
OR
which tox

If you have trouble and are seeing weird errors upon running tox, you can also try to create a dedicated virtual
environment with a tox binary freshly installed. For example:

virtualenv .venv
source .venv/bin/activate
.venv/bin/pip install tox
.venv/bin/tox -e all

4. Pytest can drop you in an interactive session in the case an error occurs. In order to do that you need to pass
a --pdb option (for example by running tox -- -k <NAME OF THE FALLING TEST> --pdb). You can also
setup breakpoints manually instead of using the --pdb option.

1.5. Contributing 19

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
https://github.com/abravalheri/validate-pyproject
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://tox.wiki/en/stable/
https://docs.pytest.org/en/stable/how-to/failures.html#using-python-library-pdb-with-pytest

validate-pyproject Documentation, Release 0.16

1.5.4 Maintainer tasks

If you are part of the group of maintainers and have correct user permissions on PyPI, the following steps can be used
to release a new version for validate-pyproject:

1. Make sure all unit tests are successful.

2. Tag the current commit on the main branch with a release tag, e.g., v1.2.3.

3. Push the new tag to the upstream repository, e.g., git push upstream v1.2.3

4. Clean up the dist and build folders with tox -e clean (or rm -rf dist build) to avoid confusion with
old builds and Sphinx docs.

5. Run tox -e build and check that the files in dist have the correct version (no .dirty or git hash) according
to the git tag. Also check the sizes of the distributions, if they are too big (e.g., > 500KB), unwanted clutter may
have been accidentally included.

6. Run tox -e publish -- --repository pypi and check that everything was uploaded to PyPI correctly.

1.6 Developer Guide

This document describes the internal architecture and main concepts behind validate-pyproject and targets con-
tributors and plugin writers.

1.6.1 How it works

validate-pyproject relies mostly on a set of specification documents represented as JSON Schema. To run the
checks encoded under these schema files validate-pyproject uses the fastjsonschema package.

This procedure is defined in the api module, specifically under the Validator class. Validator objects use
SchemaRegistry instances to store references to the JSON schema documents being used for the validation. The
formats module is also important to this process, since it defines how to validate the custom values for the "format"
field defined in JSON Schema, for "string" values.

Checks for PEP 517, PEP 518 and PEP 621 are performed by default, however these standards do not specify how the
tool table and its subtables are populated.

Since different tools allow different configurations, it would be impractical to try to create schemas for all of them inside
the same project. Instead, validate-pyproject allows Plugins to provide extra JSON Schemas, against which tool
subtables can be checked.

1.6.2 Plugins

Plugins are a way of extending the built-in functionality of validate-pyproject, can be simply described as func-
tions that return a JSON schema parsed as a Python dict:

def plugin(tool_name: str) -> dict:
...

These functions receive as argument the name of the tool subtable and should return a JSON schema for the data
structure under this table (it should not include the table name itself as a property).

To use a plugin you can pass a plugins argument to the Validator constructor, but you will need to wrap it with
PluginWrapper to be able to specify which tool subtable it would be checking:

20 Chapter 1. Contents

https://pypi.org/
https://github.com/abravalheri/validate-pyproject
https://git-scm.com
https://git-scm.com
https://pypi.org/
https://json-schema.org/
https://pypi.org/project/fastjsonschema
https://peps.python.org/pep-0517/
https://peps.python.org/pep-0518/
https://peps.python.org/pep-0621/
https://docs.python.org/3.10/library/stdtypes.html#dict

validate-pyproject Documentation, Release 0.16

from validate_pyproject import api, plugins

def your_plugin(tool_name: str) -> dict:
return {

"$id": "https://your-urn-or-url", # $id is mandatory
"type": "object",
"description": "Your tool configuration description",
"properties": {

"your-config-field": {"type": "string", "format": "python-module-name"}
},

}

available_plugins = [
*plugins.list_from_entry_points(),
plugins.PluginWrapper("your-tool", your_plugin),

]
validator = api.Validator(available_plugins)

Please notice that you can also make your plugin “autoloadable” by creating and distributing your own Python package
as described in the following section.

Distributing Plugins

To distribute plugins, it is necessary to create a Python package with a validate_pyproject.tool_schema entry-
point.

For the time being, if using setuptools, this can be achieved by adding the following to your setup.cfg file:

in setup.cfg
[options.entry_points]
validate_pyproject.tool_schema =

your-tool = your_package.your_module:your_plugin

When using a PEP 621-compliant backend, the following can be add to your pyproject.toml file:

in pyproject.toml
[project.entry-points."validate_pyproject.tool_schema"]
your-tool = "your_package.your_module:your_plugin"

The plugin function will be automatically called with the tool_name argument as same name as given to the entrypoint
(e.g. your_plugin("your-tool")).

Also notice plugins are activated in a specific order, using Python’s built-in sorted function.

1.6. Developer Guide 21

https://packaging.python.org/
https://setuptools.pypa.io/en/stable/userguide/entry_point.html#entry-points
https://setuptools.pypa.io/en/stable/userguide/entry_point.html#entry-points
https://setuptools.pypa.io/en/stable/
https://peps.python.org/pep-0621/

validate-pyproject Documentation, Release 0.16

1.7 License

Mozilla Public License, version 2.0

1. Definitions

1.1. “Contributor”

means each individual or legal entity that creates, contributes to the creation of, or owns Covered Software.

1.2. “Contributor Version”

means the combination of the Contributions of others (if any) used by a Contributor and that particular
Contributor’s Contribution.

1.3. “Contribution”

means Covered Software of a particular Contributor.

1.4. “Covered Software”

means Source Code Form to which the initial Contributor has attached the notice in Exhibit A, the Ex-
ecutable Form of such Source Code Form, and Modifications of such Source Code Form, in each case
including portions thereof.

1.5. “Incompatible With Secondary Licenses”
means

a. that the initial Contributor has attached the notice described in Exhibit B to the Covered Software; or

b. that the Covered Software was made available under the terms of version 1.1 or earlier of the License, but
not also under the terms of a Secondary License.

1.6. “Executable Form”

means any form of the work other than Source Code Form.

1.7. “Larger Work”

means a work that combines Covered Software with other material, in a separate file or files, that is not
Covered Software.

1.8. “License”

means this document.

1.9. “Licensable”

means having the right to grant, to the maximum extent possible, whether at the time of the initial grant
or subsequently, any and all of the rights conveyed by this License.

1.10. “Modifications”

means any of the following:

a. any file in Source Code Form that results from an addition to, deletion from, or modification of the
contents of Covered Software; or

b. any new file in Source Code Form that contains any Covered Software.

1.11. “Patent Claims” of a Contributor

means any patent claim(s), including without limitation, method, process, and apparatus claims, in any
patent Licensable by such Contributor that would be infringed, but for the grant of the License, by the
making, using, selling, offering for sale, having made, import, or transfer of either its Contributions or its
Contributor Version.

22 Chapter 1. Contents

validate-pyproject Documentation, Release 0.16

1.12. “Secondary License”

means either the GNU General Public License, Version 2.0, the GNU Lesser General Public License,
Version 2.1, the GNU Affero General Public License, Version 3.0, or any later versions of those licenses.

1.13. “Source Code Form”

means the form of the work preferred for making modifications.

1.14. “You” (or “Your”)

means an individual or a legal entity exercising rights under this License. For legal entities, “You” includes
any entity that controls, is controlled by, or is under common control with You. For purposes of this
definition, “control” means (a) the power, direct or indirect, to cause the direction or management of
such entity, whether by contract or otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.

2. License Grants and Conditions

2.1. Grants

Each Contributor hereby grants You a world-wide, royalty-free, non-exclusive license:

a. under intellectual property rights (other than patent or trademark) Licensable by such Contributor
to use, reproduce, make available, modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or as part of a Larger Work; and

b. under Patent Claims of such Contributor to make, use, sell, offer for sale, have made, import, and
otherwise transfer either its Contributions or its Contributor Version.

2.2. Effective Date

The licenses granted in Section 2.1 with respect to any Contribution become effective for each Contribution
on the date the Contributor first distributes such Contribution.

2.3. Limitations on Grant Scope

The licenses granted in this Section 2 are the only rights granted under this License. No additional rights
or licenses will be implied from the distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a Contributor:

a. for any code that a Contributor has removed from Covered Software; or

b. for infringements caused by: (i) Your and any other third party’s modifications of Covered Software,
or (ii) the combination of its Contributions with other software (except as part of its Contributor
Version); or

c. under Patent Claims infringed by Covered Software in the absence of its Contributions.

This License does not grant any rights in the trademarks, service marks, or logos of any Contributor (except
as may be necessary to comply with the notice requirements in Section 3.4).

2.4. Subsequent Licenses

No Contributor makes additional grants as a result of Your choice to distribute the Covered Software
under a subsequent version of this License (see Section 10.2) or under the terms of a Secondary License
(if permitted under the terms of Section 3.3).

2.5. Representation

Each Contributor represents that the Contributor believes its Contributions are its original creation(s) or it
has sufficient rights to grant the rights to its Contributions conveyed by this License.

2.6. Fair Use

1.7. License 23

validate-pyproject Documentation, Release 0.16

This License is not intended to limit any rights You have under applicable copyright doctrines of fair use,
fair dealing, or other equivalents.

2.7. Conditions

Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in Section 2.1.

3. Responsibilities

3.1. Distribution of Source Form

All distribution of Covered Software in Source Code Form, including any Modifications that You create
or to which You contribute, must be under the terms of this License. You must inform recipients that the
Source Code Form of the Covered Software is governed by the terms of this License, and how they can
obtain a copy of this License. You may not attempt to alter or restrict the recipients’ rights in the Source
Code Form.

3.2. Distribution of Executable Form

If You distribute Covered Software in Executable Form then:

a. such Covered Software must also be made available in Source Code Form, as described in Section
3.1, and You must inform recipients of the Executable Form how they can obtain a copy of such
Source Code Form by reasonable means in a timely manner, at a charge no more than the cost of
distribution to the recipient; and

b. You may distribute such Executable Form under the terms of this License, or sublicense it under
different terms, provided that the license for the Executable Form does not attempt to limit or alter
the recipients’ rights in the Source Code Form under this License.

3.3. Distribution of a Larger Work

You may create and distribute a Larger Work under terms of Your choice, provided that You also comply
with the requirements of this License for the Covered Software. If the Larger Work is a combination of
Covered Software with a work governed by one or more Secondary Licenses, and the Covered Software
is not Incompatible With Secondary Licenses, this License permits You to additionally distribute such
Covered Software under the terms of such Secondary License(s), so that the recipient of the Larger Work
may, at their option, further distribute the Covered Software under the terms of either this License or such
Secondary License(s).

3.4. Notices

You may not remove or alter the substance of any license notices (including copyright notices, patent
notices, disclaimers of warranty, or limitations of liability) contained within the Source Code Form of the
Covered Software, except that You may alter any license notices to the extent required to remedy known
factual inaccuracies.

3.5. Application of Additional Terms

You may choose to offer, and to charge a fee for, warranty, support, indemnity or liability obligations to
one or more recipients of Covered Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any such warranty, support, indemnity,
or liability obligation is offered by You alone, and You hereby agree to indemnify every Contributor for
any liability incurred by such Contributor as a result of warranty, support, indemnity or liability terms
You offer. You may include additional disclaimers of warranty and limitations of liability specific to any
jurisdiction.

4. Inability to Comply Due to Statute or Regulation

If it is impossible for You to comply with any of the terms of this License with respect to some or all of the Covered
Software due to statute, judicial order, or regulation then You must: (a) comply with the terms of this License to
the maximum extent possible; and (b) describe the limitations and the code they affect. Such description must

24 Chapter 1. Contents

validate-pyproject Documentation, Release 0.16

be placed in a text file included with all distributions of the Covered Software under this License. Except to the
extent prohibited by statute or regulation, such description must be sufficiently detailed for a recipient of ordinary
skill to be able to understand it.

5. Termination

5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant, then the rights granted under this
License from a particular Contributor are reinstated (a) provisionally, unless and until such Contributor explicitly
and finally terminates Your grants, and (b) on an ongoing basis, if such Contributor fails to notify You of the non-
compliance by some reasonable means prior to 60 days after You have come back into compliance. Moreover,
Your grants from a particular Contributor are reinstated on an ongoing basis if such Contributor notifies You of
the non-compliance by some reasonable means, this is the first time You have received notice of non-compliance
with this License from such Contributor, and You become compliant prior to 30 days after Your receipt of the
notice.

5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions, counter-claims, and cross-claims) alleging that a
Contributor Version directly or indirectly infringes any patent, then the rights granted to You by any and all
Contributors for the Covered Software under Section 2.1 of this License shall terminate.

5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been validly granted by You or Your dis-
tributors under this License prior to termination shall survive termination.

6. Disclaimer of Warranty

Covered Software is provided under this License on an “as is” basis, without warranty of any kind, either ex-
pressed, implied, or statutory, including, without limitation, warranties that the Covered Software is free of
defects, merchantable, fit for a particular purpose or non-infringing. The entire risk as to the quality and per-
formance of the Covered Software is with You. Should any Covered Software prove defective in any respect,
You (not any Contributor) assume the cost of any necessary servicing, repair, or correction. This disclaimer of
warranty constitutes an essential part of this License. No use of any Covered Software is authorized under this
License except under this disclaimer.

7. Limitation of Liability

Under no circumstances and under no legal theory, whether tort (including negligence), contract, or otherwise,
shall any Contributor, or anyone who distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any character including, without limitation,
damages for lost profits, loss of goodwill, work stoppage, computer failure or malfunction, or any and all other
commercial damages or losses, even if such party shall have been informed of the possibility of such damages.
This limitation of liability shall not apply to liability for death or personal injury resulting from such party’s
negligence to the extent applicable law prohibits such limitation. Some jurisdictions do not allow the exclusion
or limitation of incidental or consequential damages, so this exclusion and limitation may not apply to You.

8. Litigation

Any litigation relating to this License may be brought only in the courts of a jurisdiction where the defendant
maintains its principal place of business and such litigation shall be governed by laws of that jurisdiction, without
reference to its conflict-of-law provisions. Nothing in this Section shall prevent a party’s ability to bring cross-
claims or counter-claims.

9. Miscellaneous

This License represents the complete agreement concerning the subject matter hereof. If any provision of this
License is held to be unenforceable, such provision shall be reformed only to the extent necessary to make it
enforceable. Any law or regulation which provides that the language of a contract shall be construed against the
drafter shall not be used to construe this License against a Contributor.

1.7. License 25

validate-pyproject Documentation, Release 0.16

10. Versions of the License

10.1. New Versions

Mozilla Foundation is the license steward. Except as provided in Section 10.3, no one other than the
license steward has the right to modify or publish new versions of this License. Each version will be given
a distinguishing version number.

10.2. Effect of New Versions

You may distribute the Covered Software under the terms of the version of the License under which You
originally received the Covered Software, or under the terms of any subsequent version published by the
license steward.

10.3. Modified Versions

If you create software not governed by this License, and you want to create a new license for such software,
you may create and use a modified version of this License if you rename the license and remove any
references to the name of the license steward (except to note that such modified license differs from this
License).

10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses If You choose to distribute Source Code Form that is Incompatible With Secondary Licenses under the
terms of this version of the License, the notice described in Exhibit B of this License must be attached.

Exhibit A - Source Code Form License Notice

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL
was not distributed with this file, You can obtain one at https://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular file, then You may include the notice in a location (such
as a LICENSE file in a relevant directory) where a recipient would be likely to look for such a notice.

You may add additional accurate notices of copyright ownership.

Exhibit B - “Incompatible With Secondary Licenses” Notice

This Source Code Form is “Incompatible With Secondary Licenses”, as defined by the Mozilla Public
License, v. 2.0.

1.8 Contributors

• Anderson Bravalheri <andersonbravalheri@gmail.com>

1.9 Changelog

1.9.1 Version 0.16

• Fix setuptools readme field , #116

• Fix oneOf <> anyOf in setuptools schema, #117

• Add previously omitted type keywords for string values, #117

• Add schema validator check, #118

• Add SchemaStore conversion script, #119

• Allow tool(s) to be specified via URL (added CLI option: --tool), #121

26 Chapter 1. Contents

https://mozilla.org/MPL/2.0/
mailto:andersonbravalheri@gmail.com

validate-pyproject Documentation, Release 0.16

• Support uint formats (as used by Ruff’s schema), #128

• Allow schemas to be loaded from SchemaStore (added CLI option: --store), #133

1.9.2 Version 0.15

• Update setuptools schema definitions, #112

• Add __repr__ to plugin wrapper, by @henryiii #114

• Fix standard $schema ending #, by @henryiii #113

1.9.3 Version 0.14

• Ensure reporting show more detailed error messages for RedefiningStaticFieldAsDynamic, #104

• Add support for repo-review, by @henryiii in #105

1.9.4 Version 0.13

• Make it clear when using input from stdin, #96

• Fix summary for allOf, #100

• setuptools plugin:

– Improve validation of attr directives, #101

1.9.5 Version 0.12.2

• setuptools plugin:

– Fix problem with license-files patterns, by removing default value.

1.9.6 Version 0.12.1

• setuptools plugin:

– Allow PEP 561 stub names in tool.setuptools.package-dir, #87

1.9.7 Version 0.12

• setuptools plugin:

– Allow PEP 561 stub names in tool.setuptools.packages, #86

1.9. Changelog 27

validate-pyproject Documentation, Release 0.16

1.9.8 Version 0.11

• Improve error message for invalid replacements in the pre_compile CLI, #71

• Allow package to be build from git archive, #53

• Improve error message for invalid replacements in the pre_compile CLI, #71

• Error-out when extra keys are added to project.authors/maintainers, #82

• De-vendor fastjsonschema, #83

1.9.9 Version 0.10.1

• Ensure LICENSE.txt is added to wheel.

1.9.10 Version 0.10

• Add NOTICE.txt to license_files, #58

• Use default SSL context when downloading classifiers from PyPI, #57

• Remove setup.py, #52

• Explicitly limit oldest supported Python version

• Replace usage of cgi.parse_header with email.message.Message

1.9.11 Version 0.9

• Use tomllib from the standard library in Python 3.11+, #42

1.9.12 Version 0.8.1

• Workaround typecheck inconsistencies between different Python versions

• Publish PEP 561 type hints, #43

1.9.13 Version 0.8

• New pre-commit hook, #40

• Allow multiple TOML files to be validated at once via CLI (no changes regarding the Python API).

1.9.14 Version 0.7.2

• setuptools plugin:

– Allow dependencies/optional-dependencies to use file directives, #37

28 Chapter 1. Contents

https://peps.python.org/pep-0561/
https://pypi.org/project/pre-commit

validate-pyproject Documentation, Release 0.16

1.9.15 Version 0.7.1

• CI: Enforced doctests

• CI: Add more tests for situations when downloading classifiers is disabled

1.9.16 Version 0.7

• Deprecated use of validate_pyproject.vendoring. This module is replaced by validate_pyproject.
pre_compile.

1.9.17 Version 0.6.1

• Fix validation of version to ensure it is given either statically or dynamically, #29

1.9.18 Version 0.6

• Allow private classifiers, #26

• setuptools plugin:

– Remove license and license-files from tool.setuptools.dynamic, #27

1.9.19 Version 0.5.2

• Exported ValidationError from the main file when vendored, PR #23

• Removed ValidationError traceback to avoid polluting the user logs with generate code, PR #24

1.9.20 Version 0.5.1

• Fixed typecheck errors (only found against GitHub Actions, not Cirrus CI), PR #22

1.9.21 Version 0.5

• Fixed entry-points format to allow values without the :obj.attr part, PR #8

• Improved trove-classifier validation, even when the package is not installed, PR #9

• Improved URL validation when scheme prefix is not present, PR #14

• Vendor fastjsonschema to facilitate applying patches and latest updates, PR #15

• Remove fixes for old version of fastjsonschema, PR #16, PR #19

• Replaced usage of importlib.resources legacy functions with the new API, PR #17

• Improved error messages, PR #18

• Added GitHub Actions for automatic test and release of tags, PR #11

1.9. Changelog 29

https://github.com/abravalheri/validate-pyproject/pull/23
https://github.com/abravalheri/validate-pyproject/pull/24
https://github.com/abravalheri/validate-pyproject/pull/22
https://github.com/abravalheri/validate-pyproject/pull/8
https://github.com/abravalheri/validate-pyproject/pull/9
https://github.com/abravalheri/validate-pyproject/pull/14
https://pypi.org/project/fastjsonschema
https://github.com/abravalheri/validate-pyproject/pull/15
https://pypi.org/project/fastjsonschema
https://github.com/abravalheri/validate-pyproject/pull/16
https://github.com/abravalheri/validate-pyproject/pull/19
https://docs.python.org/3.10/library/importlib.html#module-importlib.resources
https://github.com/abravalheri/validate-pyproject/pull/17
https://github.com/abravalheri/validate-pyproject/pull/18
https://github.com/abravalheri/validate-pyproject/pull/11

validate-pyproject Documentation, Release 0.16

1.9.22 Version 0.4

• Validation now fails when non-standardised fields to be added to the project table (issue #4, PR #5)

• Terminology and schema names were also updated to avoid specific PEP numbers and refer instead to living
standards (issue #6, PR #7)

1.9.23 Version 0.3.3

• Remove upper pin from the tomli dependency by @hukkin (PR #1)

• Fix failing blacken-docs pre-commit hook by @hukkin (PR #2)

• Update versions of tools and containers used in the CI setup (PR #3)

1.9.24 Version 0.3.2

• Updated fastjsonschema dependency version.

• Removed workarounds for fastjsonschema pre 2.15.2

1.9.25 Version 0.3.1

• setuptools plugin:

– Fixed missing required properties for the attr: and file: directives (previously empty objects
were allowed).

1.9.26 Version 0.3

• setuptools plugin:

– Added support for readme, license and license-files via dynamic.

Warning: license and license-files in dynamic are PROVISIONAL they are likely to
change depending on PEP 639

– Removed support for tool.setuptools.dynamic.{scripts,gui-scripts}. Dynamic val-
ues for project.{scripts,gui-scripts} are expected to be dynamically derived from tool.
setuptools.dynamic.entry-points.

1.9.27 Version 0.2

• setuptools plugin:

– Added cmdclass support

30 Chapter 1. Contents

https://github.com/abravalheri/validate-pyproject/issues/4
https://github.com/abravalheri/validate-pyproject/pull/5
https://github.com/abravalheri/validate-pyproject/issues/6
https://github.com/abravalheri/validate-pyproject/pull/7
https://pypi.org/project/tomli
https://github.com/sponsors/hukkin
https://github.com/abravalheri/validate-pyproject/pull/1
https://pypi.org/project/blacken-docs
https://github.com/sponsors/hukkin
https://github.com/abravalheri/validate-pyproject/pull/2
https://github.com/abravalheri/validate-pyproject/pull/3
https://peps.python.org/pep-0639/

validate-pyproject Documentation, Release 0.16

1.9.28 Version 0.1

• setuptools plugin:

– Added data-files support (although this option is marked as deprecated).

– Unified tool.setuptools.packages.find and tool.setuptools.packages.
find-namespace options by adding a new keyword namespaces

– tool.setuptools.packages.find.where now accepts a list of directories (previously only one
directory was accepted).

1.9.29 Version 0.0.1

• Initial release with basic functionality

1.10 validate_pyproject

1.10.1 validate_pyproject package

Subpackages

validate_pyproject.plugins package

Module contents

exception validate_pyproject.plugins.ErrorLoadingPlugin(plugin: str = '', entry_point: EntryPoint |
None = None)

Bases: RuntimeError

There was an error loading ‘{plugin}’. Please make sure you have installed a version of the plugin that is com-
patible with {package} {version}. You can also try uninstalling it.

class validate_pyproject.plugins.PluginProtocol

Bases: object

property fragment: str

property help_text: str

property id: str

property schema: Schema

property tool: str

class validate_pyproject.plugins.PluginWrapper(tool: str, load_fn: Plugin)
Bases: object

property fragment: str

property help_text: str

property id: str

1.10. validate_pyproject 31

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/exceptions.html#RuntimeError
https://docs.python.org/3.10/library/functions.html#object
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#object
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str

validate-pyproject Documentation, Release 0.16

property schema: Schema

property tool: str

validate_pyproject.plugins.iterate_entry_points(group: str = 'validate_pyproject.tool_schema')→
Iterable[EntryPoint]

Produces a generator yielding an EntryPoint object for each plugin registered via setuptools entry point mech-
anism.

This method can be used in conjunction with load_from_entry_point to filter the plugins before actually
loading them.

validate_pyproject.plugins.list_from_entry_points(group: str = 'validate_pyproject.tool_schema',
filtering: ~typ-
ing.Callable[[~importlib.metadata.EntryPoint],
bool] = <function <lambda>>)→
List[PluginWrapper]

Produces a list of plugin objects for each plugin registered via setuptools entry point mechanism.

Parameters

• group – name of the setuptools’ entry point group where plugins is being registered

• filtering – function returning a boolean deciding if the entry point should be loaded and
included (or not) in the final list. A True return means the plugin should be included.

validate_pyproject.plugins.load_from_entry_point(entry_point: EntryPoint)→ PluginWrapper
Carefully load the plugin, raising a meaningful message in case of errors

validate_pyproject.pre_compile package

Submodules

validate_pyproject.pre_compile.cli module

class validate_pyproject.pre_compile.cli.CliParams(plugins, output_dir, main_file, replacements,
loglevel, tool, store)

Bases: NamedTuple

loglevel: int

Alias for field number 4

main_file: str

Alias for field number 2

output_dir: Path

Alias for field number 1

plugins: List[PluginWrapper]

Alias for field number 0

replacements: Mapping[str, str]

Alias for field number 3

store: str

Alias for field number 6

32 Chapter 1. Contents

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Iterable
https://setuptools.readthedocs.io/en/latest/userguide/entry_point.html
https://docs.python.org/3.10/library/typing.html#typing.List
https://setuptools.readthedocs.io/en/latest/userguide/entry_point.html
https://docs.python.org/3.10/library/typing.html#typing.NamedTuple
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/typing.html#typing.List
https://docs.python.org/3.10/library/typing.html#typing.Mapping
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str

validate-pyproject Documentation, Release 0.16

tool: Sequence[str]

Alias for field number 5

validate_pyproject.pre_compile.cli.JSON_dict(name: str, value: str)→ Dict[str, Any]

validate_pyproject.pre_compile.cli.ensure_dict(name: str, value: Any)→ dict

validate_pyproject.pre_compile.cli.main(args: Sequence[str] = ())→ int

validate_pyproject.pre_compile.cli.parser_spec(plugins: Sequence[PluginWrapper])→ Dict[str, dict]

validate_pyproject.pre_compile.cli.run(args: Sequence[str] = ())→ int

Module contents

validate_pyproject.pre_compile.copy_fastjsonschema_exceptions(output_dir: Path, replacements:
Dict[str, str])→ Path

validate_pyproject.pre_compile.copy_module(name: str, output_dir: Path, replacements: Dict[str, str])→
Path

validate_pyproject.pre_compile.load_licenses()→ Dict[str, str]

validate_pyproject.pre_compile.pre_compile(output_dir: str | PathLike = '.', main_file: str = '__init__.py',
original_cmd: str = '', plugins: AllPlugins |
Sequence[PluginProtocol] = AllPlugins.ALL_PLUGINS,
text_replacements: Mapping[str, str] =
mappingproxy({'from fastjsonschema import': 'from
.fastjsonschema_exceptions import'}), *, extra_plugins:
Sequence[PluginProtocol] = ())→ Path

Populate the given output_dir with all files necessary to perform the validation. The validation can
be performed by calling the validate function inside the the file named with the main_file value.
text_replacements can be used to

validate_pyproject.pre_compile.replace_text(text: str, replacements: Dict[str, str])→ str

validate_pyproject.pre_compile.write_main(file_path: Path, schema: Schema, replacements: Dict[str,
str])→ Path

validate_pyproject.pre_compile.write_notice(out: Path, main_file: str, cmd: str, replacements: Dict[str,
str])→ Path

validate_pyproject.vendoring package

Submodules

validate_pyproject.vendoring.cli module

validate_pyproject.vendoring.cli.main(*args: Any, **kwargs: Any)→ Any

validate_pyproject.vendoring.cli.run(*args: Any, **kwargs: Any)→ Any

1.10. validate_pyproject 33

https://docs.python.org/3.10/library/typing.html#typing.Sequence
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Any
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Any
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/typing.html#typing.Sequence
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/typing.html#typing.Sequence
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/typing.html#typing.Sequence
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/os.html#os.PathLike
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Sequence
https://docs.python.org/3.10/library/typing.html#typing.Mapping
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Sequence
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/typing.html#typing.Any
https://docs.python.org/3.10/library/typing.html#typing.Any
https://docs.python.org/3.10/library/typing.html#typing.Any
https://docs.python.org/3.10/library/typing.html#typing.Any
https://docs.python.org/3.10/library/typing.html#typing.Any
https://docs.python.org/3.10/library/typing.html#typing.Any

validate-pyproject Documentation, Release 0.16

Module contents

validate_pyproject.vendoring.vendorify(*args: Any, **kwargs: Any)→ Any

Submodules

validate_pyproject.api module

Retrieve JSON schemas for validating dicts representing a pyproject.toml file.

class validate_pyproject.api.AllPlugins(value)
Bases: Enum

An enumeration.

ALL_PLUGINS = 1

class validate_pyproject.api.RefHandler(registry: Mapping[str, Schema])
Bases: Mapping[str, Callable[[str], Schema]]

fastjsonschema allows passing a dict-like object to load external schema $ref``s. Such objects map
the URI schema (e.g. ``http, https, ftp) into a function that receives the schema URI and returns the
schema (as parsed JSON) (otherwise urllib is used and the URI is assumed to be a valid URL). This class will
ensure all the URIs are loaded from the local registry.

class validate_pyproject.api.SchemaRegistry(plugins: Sequence[PluginProtocol] = ())
Bases: Mapping[str, Schema]

Repository of parsed JSON Schemas used for validating a pyproject.toml.

During instantiation the schemas equivalent to PEP 517, PEP 518 and PEP 621 will be combined with the
schemas for the tool subtables provided by the plugins.

Since this object work as a mapping between each schema $id and the schema itself, all schemas provided by
plugins MUST have a top level $id.

property main: str

Top level schema for validating a pyproject.toml file

property spec_version: str

Version of the JSON Schema spec in use

34 Chapter 1. Contents

https://docs.python.org/3.10/library/typing.html#typing.Any
https://docs.python.org/3.10/library/typing.html#typing.Any
https://docs.python.org/3.10/library/typing.html#typing.Any
https://docs.python.org/3.10/library/enum.html#enum.Enum
https://docs.python.org/3.10/library/typing.html#typing.Mapping
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Mapping
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/urllib.html#module-urllib
https://docs.python.org/3.10/library/typing.html#typing.Sequence
https://docs.python.org/3.10/library/typing.html#typing.Mapping
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str

validate-pyproject Documentation, Release 0.16

class validate_pyproject.api.Validator(plugins: ~typing.Sequence[PluginProtocol] |
~validate_pyproject.api.AllPlugins = AllPlugins.ALL_PLUGINS,
format_validators: ~typing.Mapping[str, ~typing.Callable[[str],
bool]] = mappingproxy({'chain': <class 'itertools.chain'>,
'pep440': <function pep440>, 'pep508-identifier': <function
pep508_identifier>, 'pep508': <function pep508>,
'pep508-versionspec': <function pep508_versionspec>,
'pep517-backend-reference': <function
pep517_backend_reference>, 'trove-classifier': <function
trove_classifier>, 'pep561-stub-name': <function
pep561_stub_name>, 'url': <function url>, 'python-identifier':
<function python_identifier>, 'python-qualified-identifier':
<function python_qualified_identifier>, 'python-module-name':
<function python_module_name>, 'python-entrypoint-group':
<function python_entrypoint_group>, 'python-entrypoint-name':
<function python_entrypoint_name>,
'python-entrypoint-reference': <function
python_entrypoint_reference>, 'uint8': <function uint8>,
'uint16': <function uint16>, 'uint': <function uint>, 'int':
<function int>}), extra_validations: ~typ-
ing.Sequence[~typing.Callable[[~validate_pyproject.types.T],
~validate_pyproject.types.T]] = (<function
validate_project_dynamic>,), *, extra_plugins:
~typing.Sequence[PluginProtocol] = ())

Bases: object

property extra_validations: Sequence[Callable[[T], T]]

List of extra validation functions that run after the JSON Schema check

property formats: Mapping[str, Callable[[str], bool]]

Mapping between JSON Schema formats and functions that validates them

property generated_code: str

property registry: SchemaRegistry

property schema: Schema

Top level pyproject.toml JSON Schema

validate_pyproject.api.load(name: str, package: str = 'validate_pyproject', ext: str = '.schema.json')→
Schema

Load the schema from a JSON Schema file. The returned dict-like object is immutable.

validate_pyproject.api.load_builtin_plugin(name: str)→ Schema

validate_pyproject.api.read_text(package: str | module, resource: str)→ str

1.10. validate_pyproject 35

https://docs.python.org/3.10/library/functions.html#object
https://docs.python.org/3.10/library/typing.html#typing.Sequence
https://docs.python.org/3.10/library/typing.html#typing.Callable
https://docs.python.org/3.10/library/typing.html#typing.Mapping
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Callable
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str

validate-pyproject Documentation, Release 0.16

validate_pyproject.cli module

class validate_pyproject.cli.CliParams(input_file, plugins, tool, store, loglevel, dump_json)
Bases: NamedTuple

dump_json: bool

Alias for field number 5

input_file: List[TextIOBase]

Alias for field number 0

loglevel: int

Alias for field number 4

plugins: List[PluginWrapper]

Alias for field number 1

store: str

Alias for field number 3

tool: List[str]

Alias for field number 2

class validate_pyproject.cli.Formatter(prog, indent_increment=2, max_help_position=24, width=None)
Bases: RawTextHelpFormatter

validate_pyproject.cli.critical_logging()→ Generator[None, None, None]
Make sure the logging level is set even before parsing the CLI args

validate_pyproject.cli.exceptions2exit()→ Generator[None, None, None]

validate_pyproject.cli.main(args: Sequence[str] = ())→ int
Wrapper allowing Translator to be called in a CLI fashion.

Instead of returning the value from Translator.translate(), it prints the result to the given output_file
or stdout.

Parameters
args (List[str]) – command line parameters as list of strings (for example ["--verbose",
"setup.cfg"]).

validate_pyproject.cli.parse_args(args: ~typing.Sequence[str], plugins:
~typing.Sequence[~validate_pyproject.plugins.PluginWrapper],
description: str = 'Validate a given TOML file', get_parser_spec: ~typ-
ing.Callable[[~typing.Sequence[~validate_pyproject.plugins.PluginWrapper]],
~typing.Dict[str, dict]] = <function __meta__>, params_class:
~typing.Type[~validate_pyproject.cli.T] = <class
'validate_pyproject.cli.CliParams'>)→ T

Parse command line parameters

Parameters
args – command line parameters as list of strings (for example ["--help"]).

Returns: command line parameters namespace

validate_pyproject.cli.plugins_help(plugins: Sequence[PluginWrapper])→ str

36 Chapter 1. Contents

https://docs.python.org/3.10/library/typing.html#typing.NamedTuple
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/typing.html#typing.List
https://docs.python.org/3.10/library/io.html#io.TextIOBase
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/typing.html#typing.List
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.List
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/argparse.html#argparse.RawTextHelpFormatter
https://docs.python.org/3.10/library/typing.html#typing.Generator
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/typing.html#typing.Generator
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/typing.html#typing.Sequence
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Sequence
https://docs.python.org/3.10/library/stdtypes.html#str

validate-pyproject Documentation, Release 0.16

validate_pyproject.cli.run(args: Sequence[str] = ())→ int
Wrapper allowing Translator to be called in a CLI fashion.

Instead of returning the value from Translator.translate(), it prints the result to the given output_file
or stdout.

Parameters
args (List[str]) – command line parameters as list of strings (for example ["--verbose",
"setup.cfg"]).

validate_pyproject.cli.select_plugins(plugins: Sequence[PluginWrapper], enabled: Sequence[str] = (),
disabled: Sequence[str] = ())→ List[PluginWrapper]

validate_pyproject.cli.setup_logging(loglevel: int)→ None
Setup basic logging

Parameters
loglevel – minimum loglevel for emitting messages

validate_pyproject.error_reporting module

exception validate_pyproject.error_reporting.ValidationError(message, value=None, name=None,
definition=None, rule=None)

Bases: JsonSchemaValueException

Report violations of a given JSON schema.

This class extends JsonSchemaValueException by adding the following properties:

• summary: an improved version of the JsonSchemaValueException error message with only the neces-
sary information)

• details: more contextual information about the error like the failing schema itself and the value that
violates the schema.

Depending on the level of the verbosity of the logging configuration the exception message will be only
summary (default) or a combination of summary and details (when the logging level is set to logging.
DEBUG).

details = ''

summary = ''

validate_pyproject.error_reporting.detailed_errors()→ Generator[None, None, None]

validate_pyproject.errors module

exception validate_pyproject.errors.InvalidSchemaVersion(name: str, given_version: str,
required_version: str)

Bases: JsonSchemaDefinitionException

All schemas used in the validator should be specified using the same version as the toplevel schema ({version!r}).

Schema for {name!r} has version {given!r}.

1.10. validate_pyproject 37

https://docs.python.org/3.10/library/typing.html#typing.Sequence
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Sequence
https://docs.python.org/3.10/library/typing.html#typing.Sequence
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Sequence
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.List
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/typing.html#typing.Generator
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str

validate-pyproject Documentation, Release 0.16

exception validate_pyproject.errors.JsonSchemaDefinitionException

Bases: JsonSchemaException

Exception raised by generator of validation function.

exception validate_pyproject.errors.JsonSchemaException

Bases: ValueError

Base exception of fastjsonschema library.

exception validate_pyproject.errors.JsonSchemaValueException(message, value=None, name=None,
definition=None, rule=None)

Bases: JsonSchemaException

Exception raised by validation function. Available properties:

• message containing human-readable information what is wrong (e.g. data.property[index] must be
smaller than or equal to 42),

• invalid value (e.g. 60),

• name of a path in the data structure (e.g. data.property[index]),

• path as an array in the data structure (e.g. ['data', 'property', 'index']),

• the whole definition which the value has to fulfil (e.g. {'type': 'number', 'maximum': 42}),

• rule which the value is breaking (e.g. maximum)

• and rule_definition (e.g. 42).

Changed in version 2.14.0: Added all extra properties.

property path

property rule_definition

exception validate_pyproject.errors.SchemaMissingId(reference: str)
Bases: JsonSchemaDefinitionException

All schemas used in the validator MUST define a unique toplevel “$id”. No “$id” was found for schema asso-
ciated with {reference!r}.

exception validate_pyproject.errors.SchemaWithDuplicatedId(schema_id: str)
Bases: JsonSchemaDefinitionException

All schemas used in the validator MUST define a unique toplevel “$id”. $id = {schema_id!r} was found at least
twice.

exception validate_pyproject.errors.ValidationError(message, value=None, name=None,
definition=None, rule=None)

Bases: JsonSchemaValueException

Report violations of a given JSON schema.

This class extends JsonSchemaValueException by adding the following properties:

• summary: an improved version of the JsonSchemaValueException error message with only the neces-
sary information)

• details: more contextual information about the error like the failing schema itself and the value that
violates the schema.

38 Chapter 1. Contents

https://docs.python.org/3.10/library/exceptions.html#ValueError
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str

validate-pyproject Documentation, Release 0.16

Depending on the level of the verbosity of the logging configuration the exception message will be only
summary (default) or a combination of summary and details (when the logging level is set to logging.
DEBUG).

details = ''

summary = ''

validate_pyproject.extra_validations module

The purpose of this module is implement PEP 621 validations that are difficult to express as a JSON Schema (or that
are not supported by the current JSON Schema library).

exception validate_pyproject.extra_validations.RedefiningStaticFieldAsDynamic(message,
value=None,
name=None,
defini-
tion=None,
rule=None)

Bases: ValidationError

According to PEP 621:

Build back-ends MUST raise an error if the metadata specifies a field statically as well as being listed in dynamic.

validate_pyproject.extra_validations.validate_project_dynamic(pyproject: T)→ T

validate_pyproject.formats module

validate_pyproject.formats.int(value: int)→ bool

validate_pyproject.formats.pep440(version: str)→ bool

validate_pyproject.formats.pep508(value: str)→ bool

validate_pyproject.formats.pep508_identifier(name: str)→ bool

validate_pyproject.formats.pep508_versionspec(value: str)→ bool
Expression that can be used to specify/lock versions (including ranges)

validate_pyproject.formats.pep517_backend_reference(value: str)→ bool

validate_pyproject.formats.pep561_stub_name(value: str)→ bool

validate_pyproject.formats.python_entrypoint_group(value: str)→ bool

validate_pyproject.formats.python_entrypoint_name(value: str)→ bool

validate_pyproject.formats.python_entrypoint_reference(value: str)→ bool

validate_pyproject.formats.python_identifier(value: str)→ bool

validate_pyproject.formats.python_module_name(value: str)→ bool

validate_pyproject.formats.python_qualified_identifier(value: str)→ bool

validate_pyproject.formats.trove_classifier(value: str)→ bool

1.10. validate_pyproject 39

https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool

validate-pyproject Documentation, Release 0.16

validate_pyproject.formats.uint(value: int)→ bool

validate_pyproject.formats.uint16(value: int)→ bool

validate_pyproject.formats.uint8(value: int)→ bool

validate_pyproject.formats.url(value: str)→ bool

validate_pyproject.remote module

class validate_pyproject.remote.RemotePlugin(*, tool: str, schema: Schema, fragment: str = '')
Bases: object

classmethod from_str(tool_url: str)→ Self

classmethod from_url(tool: str, url: str)→ Self

validate_pyproject.remote.load_store(pyproject_url: str)→ Generator[RemotePlugin, None, None]
Takes a URL / Path and loads the tool table, assuming it is a set of ref’s. Currently ignores “inline” sections.
This is the format that SchemaStore (https://json.schemastore.org/pyproject.json) is in.

validate_pyproject.repo_review module

class validate_pyproject.repo_review.VPP001

Bases: object

Validate pyproject.toml

static check(pyproject: Dict[str, Any])→ str

family = 'validate-pyproject'

validate_pyproject.repo_review.repo_review_checks()→ Dict[str, VPP001]

validate_pyproject.repo_review.repo_review_families(pyproject: Dict[str, Any])→ Dict[str, Dict[str,
str]]

validate_pyproject.types module

validate_pyproject.types.FormatValidationFn

Should return True when the input string satisfies the format

alias of Callable[[str], bool]

validate_pyproject.types.Plugin

A plugin is something that receives the name of a tool sub-table (as defined in PEPPEP621) and returns a Schema.

For example plugin("setuptools") should return the JSON schema for the [tool.setuptools] table of a
pyproject.toml file.

alias of Callable[[str], Schema]

class validate_pyproject.types.Schema

JSON Schema represented as a Python dict

alias of Mapping

40 Chapter 1. Contents

https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#object
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Generator
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/constants.html#None
https://json.schemastore.org/pyproject.json
https://docs.python.org/3.10/library/functions.html#object
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Any
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Any
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Mapping

validate-pyproject Documentation, Release 0.16

validate_pyproject.types.ValidationFn

Custom validation function. It should receive as input a mapping corresponding to the whole pyproject.toml
file and raise a fastjsonschema.JsonSchemaValueException if it is not valid.

alias of Callable[[T], T]

Module contents

1.10. validate_pyproject 41

validate-pyproject Documentation, Release 0.16

42 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

43

validate-pyproject Documentation, Release 0.16

44 Chapter 2. Indices and tables

PYTHON MODULE INDEX

v
validate_pyproject, 41
validate_pyproject.api, 34
validate_pyproject.cli, 36
validate_pyproject.error_reporting, 37
validate_pyproject.errors, 37
validate_pyproject.extra_validations, 39
validate_pyproject.formats, 39
validate_pyproject.plugins, 31
validate_pyproject.pre_compile, 33
validate_pyproject.pre_compile.cli, 32
validate_pyproject.remote, 40
validate_pyproject.repo_review, 40
validate_pyproject.types, 40
validate_pyproject.vendoring, 34
validate_pyproject.vendoring.cli, 33

45

validate-pyproject Documentation, Release 0.16

46 Python Module Index

INDEX

A
ALL_PLUGINS (validate_pyproject.api.AllPlugins at-

tribute), 34
AllPlugins (class in validate_pyproject.api), 34

C
check() (validate_pyproject.repo_review.VPP001 static

method), 40
CliParams (class in validate_pyproject.cli), 36
CliParams (class in validate_pyproject.pre_compile.cli),

32
copy_fastjsonschema_exceptions() (in module val-

idate_pyproject.pre_compile), 33
copy_module() (in module vali-

date_pyproject.pre_compile), 33
critical_logging() (in module vali-

date_pyproject.cli), 36

D
detailed_errors() (in module vali-

date_pyproject.error_reporting), 37
details (validate_pyproject.error_reporting.ValidationError

attribute), 37
details (validate_pyproject.errors.ValidationError at-

tribute), 39
dump_json (validate_pyproject.cli.CliParams attribute),

36

E
ensure_dict() (in module vali-

date_pyproject.pre_compile.cli), 33
ErrorLoadingPlugin, 31
exceptions2exit() (in module validate_pyproject.cli),

36
extra_validations (validate_pyproject.api.Validator

property), 35

F
family (validate_pyproject.repo_review.VPP001 at-

tribute), 40
formats (validate_pyproject.api.Validator property), 35

Formatter (class in validate_pyproject.cli), 36
FormatValidationFn (in module vali-

date_pyproject.types), 40
fragment (validate_pyproject.plugins.PluginProtocol

property), 31
fragment (validate_pyproject.plugins.PluginWrapper

property), 31
from_str() (validate_pyproject.remote.RemotePlugin

class method), 40
from_url() (validate_pyproject.remote.RemotePlugin

class method), 40

G
generated_code (validate_pyproject.api.Validator

property), 35

H
help_text (validate_pyproject.plugins.PluginProtocol

property), 31
help_text (validate_pyproject.plugins.PluginWrapper

property), 31

I
id (validate_pyproject.plugins.PluginProtocol property),

31
id (validate_pyproject.plugins.PluginWrapper property),

31
input_file (validate_pyproject.cli.CliParams at-

tribute), 36
int() (in module validate_pyproject.formats), 39
InvalidSchemaVersion, 37
iterate_entry_points() (in module vali-

date_pyproject.plugins), 32

J
JSON_dict() (in module vali-

date_pyproject.pre_compile.cli), 33
JsonSchemaDefinitionException, 37
JsonSchemaException, 38
JsonSchemaValueException, 38

47

validate-pyproject Documentation, Release 0.16

L
list_from_entry_points() (in module vali-

date_pyproject.plugins), 32
load() (in module validate_pyproject.api), 35
load_builtin_plugin() (in module vali-

date_pyproject.api), 35
load_from_entry_point() (in module vali-

date_pyproject.plugins), 32
load_licenses() (in module vali-

date_pyproject.pre_compile), 33
load_store() (in module validate_pyproject.remote),

40
loglevel (validate_pyproject.cli.CliParams attribute),

36
loglevel (validate_pyproject.pre_compile.cli.CliParams

attribute), 32

M
main (validate_pyproject.api.SchemaRegistry property),

34
main() (in module validate_pyproject.cli), 36
main() (in module validate_pyproject.pre_compile.cli),

33
main() (in module validate_pyproject.vendoring.cli), 33
main_file (validate_pyproject.pre_compile.cli.CliParams

attribute), 32
module

validate_pyproject, 41
validate_pyproject.api, 34
validate_pyproject.cli, 36
validate_pyproject.error_reporting, 37
validate_pyproject.errors, 37
validate_pyproject.extra_validations, 39
validate_pyproject.formats, 39
validate_pyproject.plugins, 31
validate_pyproject.pre_compile, 33
validate_pyproject.pre_compile.cli, 32
validate_pyproject.remote, 40
validate_pyproject.repo_review, 40
validate_pyproject.types, 40
validate_pyproject.vendoring, 34
validate_pyproject.vendoring.cli, 33

O
output_dir (validate_pyproject.pre_compile.cli.CliParams

attribute), 32

P
parse_args() (in module validate_pyproject.cli), 36
parser_spec() (in module vali-

date_pyproject.pre_compile.cli), 33
path (validate_pyproject.errors.JsonSchemaValueException

property), 38

pep440() (in module validate_pyproject.formats), 39
pep508() (in module validate_pyproject.formats), 39
pep508_identifier() (in module vali-

date_pyproject.formats), 39
pep508_versionspec() (in module vali-

date_pyproject.formats), 39
pep517_backend_reference() (in module vali-

date_pyproject.formats), 39
pep561_stub_name() (in module vali-

date_pyproject.formats), 39
Plugin (in module validate_pyproject.types), 40
PluginProtocol (class in validate_pyproject.plugins),

31
plugins (validate_pyproject.cli.CliParams attribute), 36
plugins (validate_pyproject.pre_compile.cli.CliParams

attribute), 32
plugins_help() (in module validate_pyproject.cli), 36
PluginWrapper (class in validate_pyproject.plugins), 31
pre_compile() (in module vali-

date_pyproject.pre_compile), 33
Python Enhancement Proposals

PEP 420, 11, 14
PEP 440, 6, 11
PEP 508, 6, 13
PEP 517, 1, 5, 6, 20
PEP 518, 1, 5, 9, 15, 20
PEP 561, 12, 28
PEP 621, 1, 5, 6, 9–11, 20, 21
PEP 639, 11, 30

python_entrypoint_group() (in module vali-
date_pyproject.formats), 39

python_entrypoint_name() (in module vali-
date_pyproject.formats), 39

python_entrypoint_reference() (in module vali-
date_pyproject.formats), 39

python_identifier() (in module vali-
date_pyproject.formats), 39

python_module_name() (in module vali-
date_pyproject.formats), 39

python_qualified_identifier() (in module vali-
date_pyproject.formats), 39

R
read_text() (in module validate_pyproject.api), 35
RedefiningStaticFieldAsDynamic, 39
RefHandler (class in validate_pyproject.api), 34
registry (validate_pyproject.api.Validator property),

35
RemotePlugin (class in validate_pyproject.remote), 40
replace_text() (in module vali-

date_pyproject.pre_compile), 33
replacements (validate_pyproject.pre_compile.cli.CliParams

attribute), 32

48 Index

validate-pyproject Documentation, Release 0.16

repo_review_checks() (in module vali-
date_pyproject.repo_review), 40

repo_review_families() (in module vali-
date_pyproject.repo_review), 40

RFC
RFC 1341, 7
RFC 822, 8

rule_definition (vali-
date_pyproject.errors.JsonSchemaValueException
property), 38

run() (in module validate_pyproject.cli), 36
run() (in module validate_pyproject.pre_compile.cli), 33
run() (in module validate_pyproject.vendoring.cli), 33

S
Schema (class in validate_pyproject.types), 40
schema (validate_pyproject.api.Validator property), 35
schema (validate_pyproject.plugins.PluginProtocol

property), 31
schema (validate_pyproject.plugins.PluginWrapper

property), 31
SchemaMissingId, 38
SchemaRegistry (class in validate_pyproject.api), 34
SchemaWithDuplicatedId, 38
select_plugins() (in module validate_pyproject.cli),

37
setup_logging() (in module validate_pyproject.cli), 37
spec_version (validate_pyproject.api.SchemaRegistry

property), 34
store (validate_pyproject.cli.CliParams attribute), 36
store (validate_pyproject.pre_compile.cli.CliParams at-

tribute), 32
summary (validate_pyproject.error_reporting.ValidationError

attribute), 37
summary (validate_pyproject.errors.ValidationError at-

tribute), 39

T
tool (validate_pyproject.cli.CliParams attribute), 36
tool (validate_pyproject.plugins.PluginProtocol prop-

erty), 31
tool (validate_pyproject.plugins.PluginWrapper prop-

erty), 32
tool (validate_pyproject.pre_compile.cli.CliParams at-

tribute), 32
trove_classifier() (in module vali-

date_pyproject.formats), 39

U
uint() (in module validate_pyproject.formats), 39
uint16() (in module validate_pyproject.formats), 40
uint8() (in module validate_pyproject.formats), 40
url() (in module validate_pyproject.formats), 40

V
validate_project_dynamic() (in module vali-

date_pyproject.extra_validations), 39
validate_pyproject

module, 41
validate_pyproject.api

module, 34
validate_pyproject.cli

module, 36
validate_pyproject.error_reporting

module, 37
validate_pyproject.errors

module, 37
validate_pyproject.extra_validations

module, 39
validate_pyproject.formats

module, 39
validate_pyproject.plugins

module, 31
validate_pyproject.pre_compile

module, 33
validate_pyproject.pre_compile.cli

module, 32
validate_pyproject.remote

module, 40
validate_pyproject.repo_review

module, 40
validate_pyproject.types

module, 40
validate_pyproject.vendoring

module, 34
validate_pyproject.vendoring.cli

module, 33
ValidationError, 37, 38
ValidationFn (in module validate_pyproject.types), 40
Validator (class in validate_pyproject.api), 34
vendorify() (in module validate_pyproject.vendoring),

34
VPP001 (class in validate_pyproject.repo_review), 40

W
write_main() (in module vali-

date_pyproject.pre_compile), 33
write_notice() (in module vali-

date_pyproject.pre_compile), 33

Index 49

	Contents
	validate-pyproject
	Description
	Usage
	pre-commit
	Note

	Schemas
	Data structure for pyproject.toml files
	Package metadata stored in the project table
	Author or Maintainer
	Entry-points
	Dependency

	tool table
	tool.setuptools table
	Valid package name
	‘file:’ directive
	‘file:’ directive for dependencies
	‘attr:’ directive
	‘find:’ directive

	Embedding validations in your project
	FAQ
	Why JSON Schema?
	Why fastjsonschema?
	Why draft-07 of JSON Schema and not a more modern version?
	Why the URLs used as $id do not point to the schemas themselves?

	Contributing
	Issue Reports
	Documentation Improvements
	Code Contributions
	Understanding how the project works
	Submit an issue
	Create an environment
	Clone the repository
	Implement your changes
	Submit your contribution
	Troubleshooting

	Maintainer tasks

	Developer Guide
	How it works
	Plugins
	Distributing Plugins

	License
	Contributors
	Changelog
	Version 0.16
	Version 0.15
	Version 0.14
	Version 0.13
	Version 0.12.2
	Version 0.12.1
	Version 0.12
	Version 0.11
	Version 0.10.1
	Version 0.10
	Version 0.9
	Version 0.8.1
	Version 0.8
	Version 0.7.2
	Version 0.7.1
	Version 0.7
	Version 0.6.1
	Version 0.6
	Version 0.5.2
	Version 0.5.1
	Version 0.5
	Version 0.4
	Version 0.3.3
	Version 0.3.2
	Version 0.3.1
	Version 0.3
	Version 0.2
	Version 0.1
	Version 0.0.1

	validate_pyproject
	validate_pyproject package
	Subpackages
	validate_pyproject.plugins package
	Module contents

	validate_pyproject.pre_compile package
	Submodules
	validate_pyproject.pre_compile.cli module
	Module contents

	validate_pyproject.vendoring package
	Submodules
	validate_pyproject.vendoring.cli module
	Module contents

	Submodules
	validate_pyproject.api module
	validate_pyproject.cli module
	validate_pyproject.error_reporting module
	validate_pyproject.errors module
	validate_pyproject.extra_validations module
	validate_pyproject.formats module
	validate_pyproject.remote module
	validate_pyproject.repo_review module
	validate_pyproject.types module
	Module contents

	Indices and tables
	Python Module Index
	Index

